The other reading of reciprocals in elliptical contexts

Patrick D. Elliott
Leibniz-Zentrum Allgemeine Sprachwissenschaft (ZAS)
Andrew Murphy
Universität Leipzig
May 3, 2019

Consider the following naturally attested dialogue:¹

(i)
 a. **INTERVIEWER**: Would you like to see each other again?
 b. **INTERVIEWEE 1**: I would \(\Delta\).
 c. **INTERVIEWEE 2**: I would \(\Delta\).

In (i) the putative ellipsis antecedent *like to see each other again*, contains a reciprocal, but the putative elided material cannot \(\Delta \neq \text{like to see each other again}\). Rather in (ib), \(\Delta = \text{like to see interviewee} 2\), and in (ic) \(\Delta = \text{like to see interviewee} 1\). This is reminiscent of the fact that reflexives license strict readings under VP ellipsis (Hestvik 1995), as in (2a), where \(\Delta = \text{defend him}\). We note here that reciprocals also seem to license strict readings, as in (2b) where \(\Delta = \text{defended them} \uparrow_{J \cup B}\). The reading in (i) is however clearly not reducible to a strict reading, since the putative elided material involves singular reference.

(2)
 a. John defended himself after Bill did \(\Delta\).
 b. John and Bill defended each other after Bill did \(\Delta\).

In order to account for the reading in (i), which we dub the *other* reading, we follow Heim, Lasnik & May (1991) in decomposing *each other* into a distributor (*each*) and a reciprocator (*other*) at LF. The distributor universally quantifies over the plural antecedent. The reciprocator takes a contrast argument \(x\) bound by the distributor, and a range argument \(Z\), coreferential with the plural antecedent. And universally quantifies over members of the range, distinct from the contrast.

(3)
\[
\begin{align*}
\lambda x \left[\text{John and Bill} \uparrow_{J \cup B} \right] & \lambda y \left[\text{other}_{x,Z} \right] \lambda t_x \left[\text{defended} \uparrow_{t_x} \right] \\
= \forall x \in J \cup B, \forall y \in J \cup B[y \neq x \rightarrow x \text{ defended } y]
\end{align*}
\]

¹https://youtu.be/XI5142ZwTQ0
Our claim is that the other reading involves taking the scope of the distributor as the antecedent (see Merchant 2001 for a similar analysis of so-called E-type readings of quantifiers in elliptical contexts). The contrast argument of the reciprocator gets re-bound by the subject of the elliptical sentence, as illustrated in (4), which schematizes our analysis of (i). The interpretation of the elliptical sentence can be paraphrased as: I would like to see each \(z \in Z \), such that \(z \neq \text{me} \)

\[
\begin{align*}
&\text{(4) a. would } \left[\text{each } \left[\text{you}^Z \right] \lambda x \left[\text{other}_{x,Z} \right] \lambda y \left[t_x \text{ like to see } t_y \right] \right] \\
&\text{b. would I } \lambda x \left[\text{other}_{x,Z} \right] \lambda y \left[t_x \text{ like to see } t_y \right]
\end{align*}
\]

As far as we can see, it is not clear how one could analyze the other reading were one to treat reciprocals as, e.g., polyadic quantifiers (see, e.g., Dalrymple et al. 1994), therefore, this data can be interpreted as an argument in favour of a decompositional approach.

References

